If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X^2)-4X-8=0
a = 1; b = -4; c = -8;
Δ = b2-4ac
Δ = -42-4·1·(-8)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{3}}{2*1}=\frac{4-4\sqrt{3}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{3}}{2*1}=\frac{4+4\sqrt{3}}{2} $
| -3x+1/3=3/10 | | U-14=v | | 400/3=(x-8)^2 | | 63.98+0.08x=55.98+0.12x | | 3(91)+13y=-169 | | 17x=9x+56 | | X-10/3=4x+9/4= | | 3(-39)+13y=-169 | | 5/11=y/8 | | 9p2^2=-21p-6 | | 5(2+2b)-4(-4b-6)=20 | | 2(6x²-200x+1250)=0 | | 3(26)+13y=-169 | | 14.7+0.4x=44.7 | | 14.7+0.4x=28.7 | | 4(-60)-16y=450 | | 14.7+0.4x=22.7 | | 4(3m+4)-2(2m+3)=15 | | 4x-60+x+20=180 | | 10x-2(x+-3)=10 | | 23=x+15 | | 2(m+4)+3(m+3)=12 | | 8x=0.2 | | 10x-2x+-3=10 | | 7^(x-2)=10 | | 10x-2x+-6=10 | | x-(20-x)=8 | | (x-4)=3x+7 | | −(x−4)=2x+6 | | 3(5^(x-2))+1=10 | | 2/3.x-5=0 | | P2-10p+15=0 |